6 tech advancements changing the fossil fuels game

Subsea processing

Subsea processing can turn marginal fields into major producers.

Subsea production systems are wells located on the sea floor rather than the surface. Petroleum is extracted at the seafloor, and then 'tied-back' to an already existing production platform. The well is drilled by a moveable rig and the extracted oil and natural gas is transported by riser or undersea pipeline to a nearby production platform. Subsea systems are typically in use at depths of 7,000 feet or more. They don't drill, they just extract and transport.

The real advantage of subsea production systems is that they allow you to use one platform—strategically placed—to service many well areas. And as the cost of offshore production rises, this could represent significant savings.

Subsea production could rival traditional offshore production in less than 15-20 years, and we're looking at expected market growth for subsea facilities of around $27 billion in 2011 to an amazing $130 billion in 2020. Analysts expect E&P companies to invest more than $19 billion in subsea production equipment in 2013 alone--and up to $33 billion by 2017.

Subsea processing can handle everything from water removal and re-injection or disposal, to single-phase and multi-phase boosting of well fluids, sand and solid separation and gas/liquid separation and boosting to gas treatment and compression.

Subsea processing allows producers to separate the unwanted elements right on the seafloor, without using complicated and expensive flowlines to bring these elements up to the above-water processing facility to remove them and then send them back down to the seafloor to be re-injected. We're cutting out the middle man here. The middle man in this case is the process known as “subsea boosting.”

What we're talking about, essentially, is saving space and time (which means money) by performing processing activities on the seafloor rather than sending fluids back and forth between the seafloor and the processing facilities above water.

We are particularly interested in a new subsea rotating device that promises to enhance dual-gradient drilling (DGD). This is a system being developed by Chevron, which is hoping to deploy the system is the Gulf of Mexico later this year. What the DGD system will do is render the thousands of feet of mud that is bearing down on the wellbore … well … weightless.

And then we have subsea power grid plans, which have been making progressive leaps since 2010 towards the advancement of electric grids installed on the floor of the sea to run processing systems at the site of underwater wells. It reduces the need for so many platforms on the water surface, and makes the entire process much less complicated. The ultimate goal here is to be able to operate offshore wells remotely from land—saving countless billions.

comments powered by Disqus